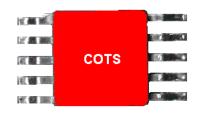

Commercialization of Military & Space Electronics - Conference


February 12-15, 2001



Commercial Off-The-Shelf (COTS) Program

<u>Using Nondestructive Methods (C-SAM) for COTS</u>
<u>PEMs Screening and Qualification</u>

Mike Sandor, Shri Agarwal 4800 Oak Grove Drive Pasadena, CA 91109

Phone: (818) 354-0681 FAX: (818) 393-4559

AGENDA:

C-SAM Inspection

Failure Mechanisms/Studies

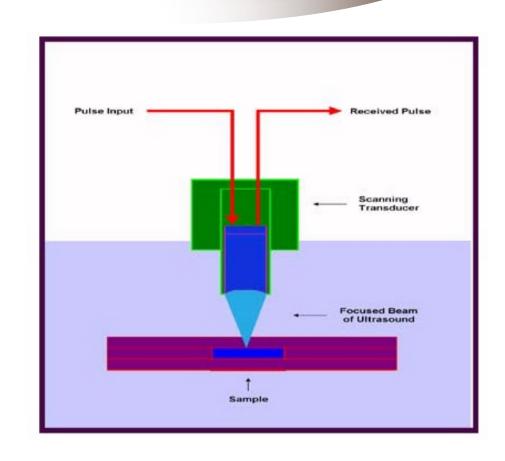
C-SAM Screening Method

Test Data

Reject Criteria/Failure Analysis

Other Work

Summary

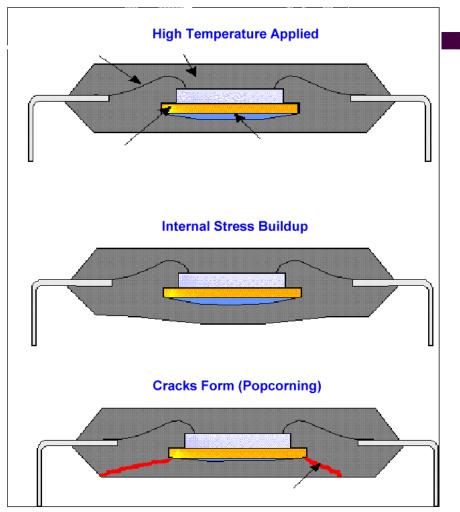

The work was performed at Jet Propulsion Laboratory California Institute of Technology under contract to the National Aeronautics and Space Administration

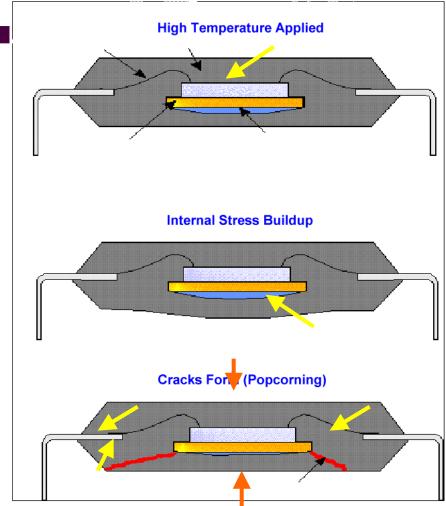
C-SAM Inspection Characteristics:

- Nondestructive Method
- Ultrasound Signal
- Ceramics, Plastics, Metals
- Voids, Cracks, Delamination,
 Anomalies, Defects, Disbonds
- Relatively inexpensive
- Cheap Reliability Insurance

Possible Failure Mechanisms from PEM Delamination Based on Independent Studies:

- Stress-induced passivation damage over the die surface
- Wire bond degradation due to shear displacement
- Accelerated metal corrosion
- Die attach adhesion
- Intermittent electricals at high temperature
- Popcorn cracking
- Die cracking
- Device Latch Up

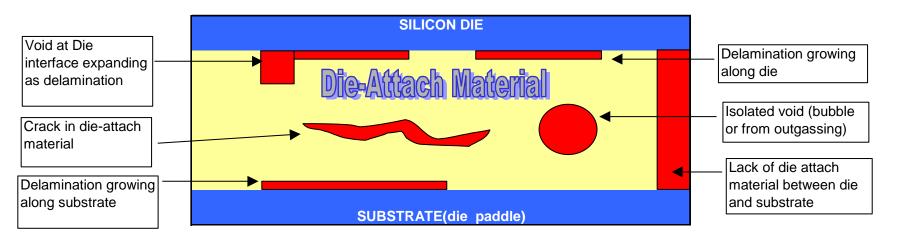



Eight Independent Studies on C-SAM Delamination /Reliability:

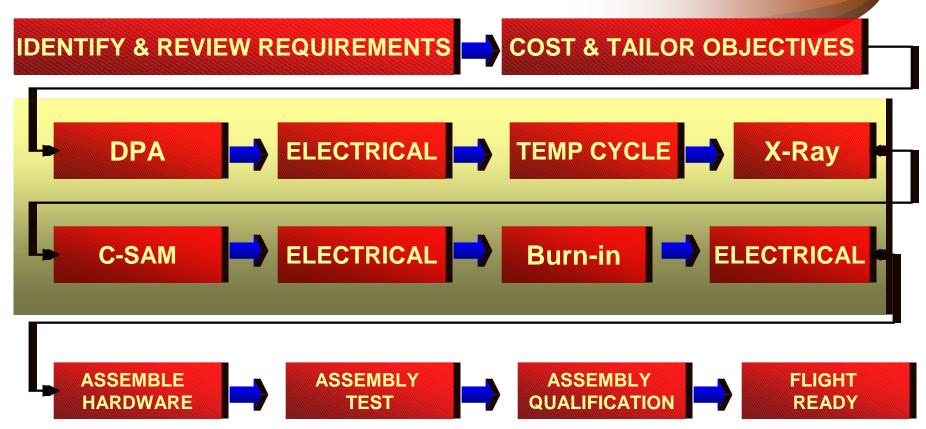
- <u>Failure Criteria</u> for Inspection Using Acoustic Microscopy After Moisture Sensitivity Testing of Plastic Surface Mount Devices; Alcatel Bell, Texas Instruments, Philips Semiconductor
- A Case Study of Plastic Part Delamination; ITT Aerospace/Communications
- <u>The Application of Scanning Acoustic Microscopy to Control Moisture/Thermal Induced Package Defects; Texas Instruments</u>
- <u>C-SAM Analysis of Plastic Packages to Resolve Bonding Failure Mode Miscorrelations;</u> <u>Texas Instruments</u>
- On the Role of Adhesion in Plastic Packaged Chips Under Thermal Cycling Stress; Siemens
- Relation Between Delamination and Temperature Cycling Induced Failures in Plastic Packaged Devices
- <u>Correlation of Surface Mount Plastic Package Reliability Testing to Nondestructive Inspection by Scanning Acoustic Microscopy; Texas Instruments</u>
- The Mystery of the Cracked Dice; Analog Devices

Popcorning Failure Mechanism from Internal Moisture

C-SAM Inspection Points for delamination which can accelerate entry of moisture/collection



C-SAM Finds Hidden Defects


HIDDEN DEFECTS IN IC PACKAGES (PLASTIC) CAN AFFECT RELIABILITY

Die-attach material serves three functions: attach die to die substrate, conducts heat away from die, and absorbs some internal stresses.

C-SAM is Included in JPL's Full Part Level Screening

COTS⁺⁺ Plastic Infusion Critical Screening Flow (Tailored for Project application/mission requirements)

COTS⁺⁺ Upscreening Rejects by Part Type & Vendor

	Amplifier- A	ADC- B	ADC2-B	DC-DC ConC	Voltage C-A	S.Regulator-B
DPA:	0/4	1/8	TBD	0/4	0/4	0/4
Incoming:	0/78	n/a	4/79	1/78	0/80	8/80
C-SAM:	3/78	38/78	9/75	16/77	5/80	0/80
Temp Cycle:	0/78	10/78	0/75	3/77	0/80	3/72
Burn-In:	0/78	3/68	0/75	0/74	0/80	9/69
QCI:	0/10	0/10	0/10	0/10	0/10	0/10
Total:	3/78	51/78	TBD	20/78	5/80	20/80

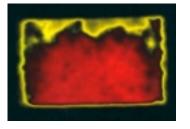
LOT by LOT Test Results:

CSAM Yields 06/12/2000						
Part Type	Manufacturer	Yield				
NPN Transistor 1	Α	83%				
Switching Diode	Α	0%				
NPN Transistor 2	Α	100%				
Zener Diode	Α	50%				
NPN Transistor 3	Α	100%				
Op-Amp 1	В	87%				
Op-Amp 2	С	0%				
Op-Amp 3	С	7%				
Phase Detector	D	100%				
MMIC	E	40%				

Results are package/ vendor assembly dependent. Failed lots were

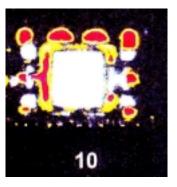
Lot sizes range from 15-30 parts each.

replaced and retested.

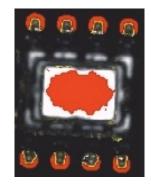


C-SAM Rejects (JPL examples): (Devices with >> 10% delamination in critical areas are suspect and are rejected)

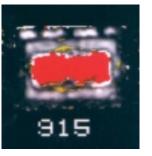
Reject



Reject



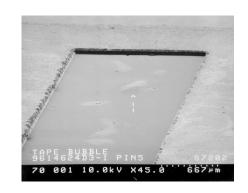
Reject

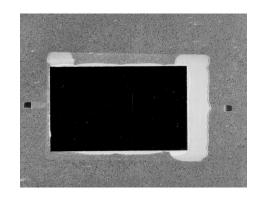


Reject

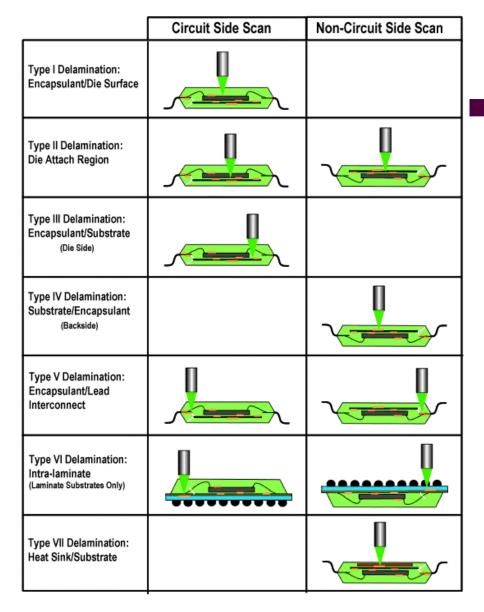
Pass*

Pass*


*Delamination is not evident because of die top coating used by the manufacturer. (e.g. C-SAM limitation)


10 Reject **JPL**

C-SAM Delaminations Confirmed by Failure Analysis: (JPL examples):



A. Die attach void at the heat sink surface

B. Bubble exists fromMylar tape near pin 5

C. Delamination and lack of adhesion between die and heat sink

Definitive results were found on six suspect problem areas submitted for analysis.

IC defect

descriptions are

now identified in

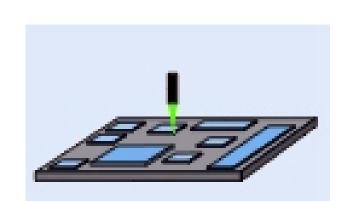
J-STD-035

(Acoustic Microscopy for NonHermetic Encapsulated Electronic Components)

Source: Sonoscan Inc.

A New Failure Characterization Study is Underway Utilizing Plastic Part C-SAM Rejects

Objectives:


- Identify C-SAM reject parts by criteria(s)
- Measure Material Properties including sonic test, IR, X-ray
- Apply extreme temperature cycle stresses
- Repeat Material Properties Measurements including C-SAM at different intervals
- Identify all failure mechanisms and risk rate C-SAM rejects

A Failed Chip Scale Board Assembly is under investigation utilizing C-SAM inspection on components/board

Objectives:

- Identify component delaminations
- Identify board layer delaminations
- Make correlation to CSP package thermal cycle failures
 - CTE Mismatch
 - Package Proximity and Location on Board
 - Ball Bond Size and Location

Summary:

- Some reported concerns/risks anticipated with using PEMs having evidence of delamination can be minimized and possibly eliminated with nondestructive AMI (acoustic microscopy imaging).
- JPL's existing screening flows for PEMs incorporates AMI 100% to enhance the reliability of parts used by JPL Projects when PEMs are the only choice available.
- Further investigations/studies are being conducted on individual components and board assemblies using AMI analysis. This information will provide more understanding of the correlation between delamination and component/ board failure mechanisms.

Additional information can be found at:

http://cots.jpl.nasa.gov